

Northern Region Farm Machinery Training & Testing Institute (Ministry of Agriculture and Farmers Welfare)

Sirsa Road, Hisar-125 001 (Haryana)

Website: http://nrfmtti.gov.in/ E-mail: fmti-nr@nic.in Tele./FAX: 01662-276984

GSTIN:06AAAGN0273P1Z3

GUIDELINES FOR FLIGHT TESTING

The UAS flight test procedure is to test the compliance of the UAS against following sections of the technical criteria of the QCI UAS Voluntary Certification Scheme:

Section	Detail
2.1	Speeds
2.3	Endurance
2.3 (a)	Fuel consumption rate
2.3 (b)	Battery discharge rate
2.4	Operational Altitude
2.8 (a)	Determine that UAS is able to maintain a stable flight without pilot input
2.8 (b)	Determine that pilot is able to control UAS with ease.
4.1 (d)	Determine that UAS is free from excessive vibrations under any operational speed and power condition
6.1 (a)	Determine full functioning of data link communication
6.1 (b)	Demonstration of system to alert the remote pilot with aural and visual signal, for any loss of command and control data link
6.1 (c)	Determine that communication range is sufficient to have a permanent connection with the UAS
6.1 (d)	Determine that when data link is lost or in other contingencies, the UAS follows a predefined path to ensure safe end of flight within the required area restrictions
6.1 (e)	Determine the capability of system to inform remote pilot by means of a warning signal in the event of data link loss
7.3	NPNT compliance
8.1 (b)	Determine whether Geo-fencing capability has been implemented
8.1 (c)	Determine whether Autonomous Flight Termination System or Return Home (RH) option has been implemented
8.1 (g)	Determine whether Detect and Avoid capability option has been implemented (Only for UAS intending to operate in Controlled Airspace)

Flight Test Schedule and Checklist

The Flight test for UAS is to be conducted as per the flight test schedule and their respective activities given below. The given test stages may or may not be conducted in single go.

After the completion of the flight test, the manufacturer shall submit logs and evidence to NRFMTTI, Hisar. NRFMTTI, Hisar will maintain a record of the same.

Flight test schedule:

TEST STAGE	MINIMUM DURATION AND HEIGHT
Stage 1: Pre-flight assessment	As per Checklist
Stage 2: Take-off	Rotary Wing: 5 mins hover at 10m AGL on takeoff Fixed Wing: Direct to Stage 3
Stage 3: Loiter / Hover	5 mins at 60 m
Stage 4: Cruise	60% time of endurance
Stage 5: Return to home location	Loiter or Hover at home location for pre-programmed duration
Stage 6: Land	Land immediately after pre-programmed hover or loiter at home location
Stage 7: Endurance test	Full endurance test

STAGE 1

A. Pre-Flight Assessment

No	Check	Manufacturer Report value	Test Lab obs (to be filled b	
•	(whichever applicable)	(to be filled by manufacturer)	Observed value / details	Passed Y / N
1	Max. All up Weight of UAS			
2	Weight of UAS without battery			
3	VTOL motor model			
4	Forward Thrust motor model			
5	VTOL Propeller model			
6	Forward thrust propeller model			
7	Battery type			
8	Battery dimension	Width: Length: Height:		
9	Battery Weight			
10	Battery mAh			
11	Payload model			
12	Dimension of UAS	Width/Span: Length: Height:		
	Engine/motor on with throttle			
13	a) 20% less than take off throttle for multi-copter & Hybrid	No excessive vibration		
	b) 80% throttle for FW in static condition (2 mins on ground just before flight)	All components intact		
		Communication link active and working		
14	GCS display	HUD orientation and value correct GPS location of drone correct		
15	Actuator functioning	As per operator input		

Tolerance of 5% will be allowed for Serial numbers 1, 2 & 9

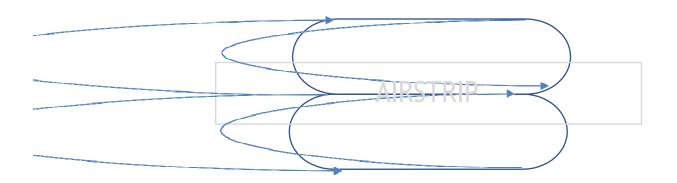
B. Pre-Flight NPNT Tests

No.	Check	Required UAS response	UAS Response observed	Passed Y/N
1.	PA with incorrect time and	Reject PA &		
	correct location	not arm		
2.	PA with incorrect location and	Reject PA &		
	correct time	not arm		
3.	PA with incorrect UUID and	Reject PA &		
	everything else correct	not arm		
4.	PA with incorrect pilot pin* with	Reject PA &		
	everything else correct	not arm		
5.	PA with correct location, time,	Accept PA and		
	UUID and pilot pin*	arm		

^{*}PilotPincases to be considered when enabled in permission artefact.

STAGE 2: Take-off

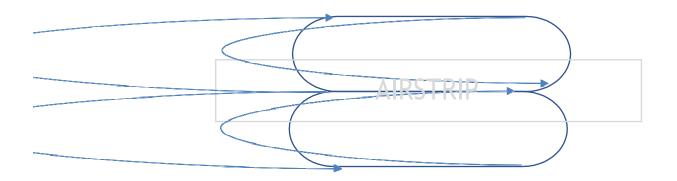
Rotary Wing: 5 mins hover at 10m AGL on takeoff Fixed Wing: Direct to Stage 3


STAGE 3: Loiter / Hover

A. If UAS is of Rotary wing configuration

No.	Activity	Compliance	Section	UAS	Passed Y/N
	(whichever applicable)			Response observed	
		UAS is free from excessive vibration	4.1 (d)		
1.	Hover at max 10 m AGL	UAS is able to maintain a stable flight without pilot input	2.8 (a)		
2.	Take pilot control of UAS from auto-hover and move in following directions: Left, Right, Forward, Backward, Up and down	Pilot is able to control RPA with ease.	2.8 (b)		

B. If UAS is of Fixed Wing configuration


No	Activity (whichever applicable)	Compliance	Section	UAS Response observed	Passed Y/N
		UAS is free from excessive vibration	4.1 (d)		
1.	Take off and loiter at 100 m AGL for 5 mins	UAS is able to maintain a stable flight without pilot input	2.8 (a)		
·-	Take pilot control of UAS from auto-loiter and conduct this manoeuvre: Level fly the UAS along the airstrip, turn from left and return, go to the other side, turn from left, follow the airstrip direction and now turn back from right, go to the other side, turn from right and return back. Put the UAS back in auto-loiter	Pilot is able to control UAS with ease.	2.8 (b)		

Flight Path for Test Flights

C. If UAS is of VTOL Fixed Wing configuration

No.	Activity (whichever applicable)	Compliance	Section	UAS Response observed	Passed Y/N
		UAS is free from excessive vibration	4.1 (d)		
1.	Hover at 10 m AGL	UAS is able to maintain a stable flight without pilot input	2.8 (a)		
2.	Take pilot control of UAS from auto-hover and move in following directions: Left, Right, Forward, Backward, Up and down	Pilot is able to control RPA with ease in VTOL mode.	2.8 (b)		
3.	Take pilot control of UAS from auto-loiter and conduct this manoeuvre: Level fly the RPA along the airstrip, turn from left and return, go to the other side, turn from left, follow the airstrip direction and now turn back from right, go to the other side, turn from right and return back. Put the UAS back in auto-loiter	Pilot is able to control RPA with ease in Fixed wing mode	2.8 (b)		

Flight Path for Test Flights

STAGE 4: Cruise

Cruise duration: Max 70% of the endurance time claimed by the manufacturer or 120 mins whichever is lower for the UAS.

Cruise mission settings: For the cruise test stage, the UAS is supposed to be operated as per the given guidelines:

- 1. A Waypoint or grid-based flight plan must be created such that there is a straight-line path from one turning point to the other turning point. The distance between these points must be such that the time taken by the UAS to travel between them must not be less than 30 seconds.
- 2. The UAS must always remain in the Visual Line of Sight of the operator.
- 3. The UAS must not cross the flight altitude of 120 m AGL at any point of time.
- 4. The UAS must have a way point outside the Geo-fence defined via the Permission Artefact
- 5. The UAS C2 link must be continuously connected to the C2 link at the ground control station.
- 6. The UAS geo-location and key flight parameters must stream and display continuously on the Ground Control Software screen running on the Ground control station.

Cruise flight test schedule and report:

No.	Activity (whichever applicable)	Compliance / Manufacturer value	Section	UAS Response observed	Passed Y/N
1.	During completion of minimum two swaths of straight-line flight between two farthest point in the flight plan	UAS maximum operating speed/cruise speed is reached but not crossed	2.1 (ii)		
	On completion of minimum two swaths of	UAS communication link is fully functional all the time	6.1 (a)		
2.	straight-line flight between two farthest point in the flight plan	Communication range is sufficient to have a permanent connection with the UAS	6.1 (c)		
3.	UAS flight waypoint outside the geo-fence. Did the UAS cross the geo-fence to reach that point?	Geo-fencing capability has been implemented	8.1 (b)		
	Towards the end of the cruise duration, disconnect the communication link from the GCS for more than	System alerts the remote pilot with aural and visual signal, for any loss of command and control data link	6.1 (b)		

	10 seconds when the UAS	System capable to		
	is at the farthest point in	inform remote pilot by		
4.	the flight plan	means of a warning	6.1 (e)	
	the hight plan	signal in the event of	0.1 (0)	
		data link loss		
		When data link is lost	C 1 (1)	
		for more than 10	6.1 (d)	
		seconds, the UAS		
		follows a predefined path		
		to ensure safe end of		
		flight within the required		
		area		
		restrictions		
	On completion of	Autonomous Flight		
	minimum two swaths of	Termination System or		
5.	straight-line flight	Return Home (RH)	8.1 (c)	
	between two farthest	option has been		
	point in the flight plan	implemented		
		The maximum altitude		
	There	attained throughout		
	Throughout the whole	should not be more than		
6.	flight observe the terrain	the declared maximum	2.4	
	altitude of UAS on the	attainable		
	GCS	height (i.e. 200ft or		
		400ft as applicable)		

STAGE 5: Return to Home

Loiter or Hover at home location for pre-programmed duration

STAGE 6: Land

No.	Activity/compliance	UAS Response observed	Passed Y/N
1.	UAS could land smoothly and softly without any damage to any part.		

STAGE 7: Endurance Test

Endurance Test procedure:

- 1. A fresh flight must be conducted with full battery charge or fuel level for endurance test
- 2. Suitable calibrated instruments must be used to measure the Battery voltage or fuel level before and after the flight.
- 3. For UAS with less than or equal to 120 mins of endurance, full endurance flight test must be conducted
- 4. For UAS with endurance more than 120 mins, battery discharge rate or fuel consumption rate must be measured for:120 min duration flight or 20% of the endurance time, whichever is longer for the UAS.

For UAS within 120 min Endurance:

No	\mathbf{c}		After flight		Endurance	Passed Y/N
	Batt. Volt / Fuel level	Time (T_0)	IV off/Enel	Time (T ₁)	$(\mathrm{T}_1\text{-}\mathrm{T}_0)$	

For UAS with more than 120 min Endurance:

No	<u> </u>		After flight completion		/ Fuel consumption	Passed Y/N
	Batt. Volt / Fuel level (F ₀)	Time	Batt. Volt/Fuel level (F ₁)	Time (T ₁)	$(F_0-F_1)/(T_1-T_0)$	

Declaration of Successful

Flight test Applicant Name:

UAS Manufacturer:

UAS model:

This is to declare that the above UAS could / couldn't complete the entire Flight Test without any technical failure, snag or glitch of any manner.

The compliance of UAS against each test is separately covered in the test report. This declaration doesn't guarantee the same.

Authorized Signatory